
1

11/4/2014 1/103

VCU, Department of Computer Science

CMSC 302
Trees

Vojislav Kecman

11/4/2014 2/103

Topics
 Terminology
 Trees as Models
 Some Tree Theorems
 Applications of Trees

 Binary Search Tree
 Decision Tree

 Tree Traversal
 Spanning Trees

11/4/2014 3/103

Terminology
• Tree

– A tree is a connected undirected graph that
contains no circuits.

– Theorem: There is a unique simple path between any
two of its nodes.

• A (not-necessarily-connected) undirected graph without
simple circuits is called a forest.
– You can think of it as a set of trees having disjoint sets of

nodes
• Subtree of node (i.e., vertex) n

– A tree that consists of a child (if any) of node n and the
child’s descendants

• Parent of node n
– The node directly above node n in the tree

• Child of node n
– A node directly below node n in the tree

11/4/2014 4/103

Which graphs are trees?

• G1 and G2 are. G3 has circuits. G4 is not connected

2

11/4/2014 5/103

Terminology
• Root

– The only node in the tree with no parent
• Leaf

– A node with no children
• Siblings

– Nodes with a common parent
• Ancestor of node n

– A node on the path from the root to n
• Descendant of node n

– A node on a path from n to a leaf

We’ll come back to this math a little latter

11/4/2014 6/103

What are the relations/terms/connections for some vertices?

11/4/2014 7/103

Tree and Forest Examples

• A Tree: • A Forest:
Leaves in green,
internal nodes in brown.

Note: by adding this link, trees
becomes graph. It’s no longer tree!

11/4/2014 8/103

3

11/4/2014 9/103

Examples of Rooted Trees

• Note that a given unrooted tree with n
nodes yields n different rooted trees.

root

root

Same tree
except

for choice
of root

11/4/2014 10/103

Examples of Rooted Trees

root

root

Same trees with the same root!
Just, below, the tree is redrawn to have

the Root at the top!

11/4/2014 11/103

n-ary trees
• A tree is called n-ary if every vertex has no

more than n children.
– It is called full if every internal (non-leaf) vertex

has exactly n children.
• A 2-ary tree is called a binary tree.

– These are handy for describing sequences of
yes-no decisions.
• Example 1: Comparisons in binary search algorithm.

Example 2:

11/4/2014 12/103

What trees are shown below?

4

11/4/2014 13/103

Which Tree is Binary?

• Theorem: A given rooted tree is a binary tree iff
every node other than the root has degree ≤ 3,
and the root has degree ≤ 2.

NO (the root has degree 3) YES

11/4/2014 14/103

Some algebraic properties of trees

On the next slide, there will be some repetition and a little more of the trees’ theory !

11/4/2014 15/103

Some Tree Theorems
• Any tree with n nodes has e = n−1 edges.
• A full m-ary tree with i internal nodes has

n=mi+1 nodes, and =(m−1)i+1 leaves.
– Proof: There are mi children of

internal nodes, plus the root. And,
 = n−i = (m−1)i+1. □

• Thus, when m is known and the tree is
full, we can compute all four of the values
e, i, n, and , given any one of them.

11/4/2014 16/103

More algebras about FULL m-ary trees

5

11/4/2014 17/103

Example:

11/4/2014 18/103

One more example

11/4/2014 19/103

Some More Tree Theorems
• Definition: The level of a node is the length of

the simple path from the root to the node.
– The height of a tree is maximum node level.
– A rooted m-ary tree with height h is called balanced

if all leaves are at levels h or h−1.
• Theorem: There are at most mh leaves in an

m-ary tree of height h.
– Corollary: An m-ary tree with leaves has height

h≥logm . If m is full and balanced then h=logm.

11/4/2014 20/103

Trees as Models

• Can use trees to model the following:
– Saturated hydrocarbons
– Organizational structures
– Computer file systems

• See about these in your textbook
• Perform the self learning here – it’s simple

Two examples follow!

6

11/4/2014 21/103

Tree as the model

11/4/2014 22/103

Another one!

11/4/2014 23/103

10.2 Applications of Trees

– Search trees
– Decision trees
– Prefix codes
– Expression trees

24/103

Before proceeding any further a tiny
quiz for you? Which graphs are trees?

a) b)

c)
b) is not a tree, for there are circuits

7

25/103

So the goal in computer programs is often to find
any stored item efficiently when all stored
items are ordered.

A Binary Search Tree can be used to store items
in its vertices. It enables efficient searches.

Searching always takes time; for huge
relational data, and/or for huge trees, and/or

for huge data sets, it takes huge time A special kind of binary tree in which:

1. Each vertex contains a distinct key value,

2. The key values in the tree can be compared using
“greater than” and “less than”, and

3. The key value of each vertex in the tree is
less than every key value in its right subtree, and
greater than every key value in its left subtree.

A Binary Search Tree (BST) is . . .

11/4/2014 27/103

Binary Search Trees

L R

28/103

Depends on its key values and their order of insertion.
Insert the elements ‘J’ ‘E’ ‘F’ ‘T’ ‘A’ in that order.
The first value to be inserted is put into the root.

Shape of a binary search tree . .
.

‘J’

8

29/103

Thereafter, each value to be inserted begins by comparing
itself to the value in the root, moving left if it is less, or
moving right if it is greater. This continues at each level
until it can be inserted as a new leaf.

Inserting ‘E’ into the BST

‘J’

‘E’

We are inserting ‘J’ ‘E’ ‘F’ ‘T’ ‘A’

‘J’ ‘E’ ‘F’ ‘T’ ‘A’

30/103

Begin by comparing ‘F’ to the value in the root, moving
left if it is less, or moving right if it is greater. This
continues until it can be inserted as a leaf.

Inserting ‘F’ into the BST

‘J’

‘E’

‘F’

We are inserting ‘J’ ‘E’ ‘F’ ‘T’ ‘A’

‘J’ ‘E’ ‘F’ ‘T’ ‘A’

31/103

Begin by comparing ‘T’ to the value in the root, moving
left if it is less, or moving right if it is greater. This
continues until it can be inserted as a leaf.

Inserting ‘T’ into the BST

‘J’

‘E’

‘F’

‘T’

We are inserting ‘J’ ‘E’ ‘F’ ‘T’ ‘A’

‘J’ ‘E’ ‘F’ ‘T’ ‘A’

32/103

Begin by comparing ‘A’ to the value in the root, moving
left if it is less, or moving right if it is greater. This
continues until it can be inserted as a leaf.

Inserting ‘A’ into the BST

‘J’

‘E’

‘F’

‘T’

‘A’

We are inserting ‘J’ ‘E’ ‘F’ ‘T’ ‘A’

‘J’ ‘E’ ‘F’ ‘T’ ‘A’

9

33/103

is obtained by inserting
the elements ‘A’ ‘E’ ‘F’ ‘J’ ‘T’ in that order?

What binary search tree . . .

‘A’

We are inserting ‘A’ ‘E’ ‘F’ ‘J’ ‘T’
34/103

obtained by inserting
the elements ‘A’ ‘E’ ‘F’ ‘J’ ‘T’ in that order.

Binary search tree . . .

‘A’

‘E’

‘F’

‘J’

‘T’

We are inserting ‘A’ ‘E’ ‘F’ ‘J’ ‘T’

35/103

Another binary search tree

Add nodes containing these values in this order:

‘D’ ‘B’ ‘L’ ‘Q’ ‘S’ ‘V’ ‘Z’

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’ ‘P’

36/103

How would you go about searching
whether ‘F’ is in the binary search tree?

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’

We are inserting ‘D’ ‘B’ ‘L’ ‘Q’ ‘S’ ‘V’ ‘Z’

10

11/4/2014 37/103

Binary Search Trees (BST) properties

• BST supports the following operations in
Θ(log n) i.e., O(log n) average-case time:
– Searching for an existing item.
– Inserting a new item, if not already present.

• BST supports printing out all items in Θ(n)
time.

• Note that inserting into a plain sequence ai
would instead take Θ(n) worst-case time.

11/4/2014 38/103

What is the meaning of Θ(.) i.e., O(.)?
(those are the famous Theta or Big O notations).

There is a traditional hierarchy of algorithms:
• O(1) is constant-time; such an algorithm does not depend

on the size of its inputs.
• O(n) is linear-time; such an algorithm looks at each input

element once and is generally pretty good.
• O(n log n) is also pretty decent (that is n times the

logarithm base 2 of n).
• O(n2), O(n3), etc. These are polynomial-time, and generally

starting to look pretty slow, although they are still useful.
• O(2n) is exponential-time, which is common for machine

learning, i.e., data mining tasks and is really quite bad.
Exponential-time algorithms begin to run the risk of having
a decent-sized input not finish before the person wanting
the result retires.

• There are worse; like O(2^2^...(n times)...^2).

11/4/2014 39/103

n

Θ(.) i.e., O(.)

11/4/2014 40/103

Recursive Binary Tree Insert
• procedure insert(T: binary tree, x: item)

v := root[T]
if v = null then begin

root[T] := x; return “Done” end
else if v = x return “Already present”
else if x < v then

return insert(leftSubtree[T], x)
else {must be x > v}

return insert(rightSubtree[T], x)

11

11/4/2014 41/103

Decision Trees
• A decision tree represents a decision-making

process.
– Each possible “decision point” or situation is

represented by a node.
– Each possible choice that could be made at that

decision point is represented by an edge to a child
node.

• In the extended decision trees used in decision
analysis, we also include nodes that represent
random events and their outcomes.

11/4/2014 42/103

Coin-Weighing Problem

• Imagine you have 8 coins, one
of which is a lighter counterfeit,
and a free-beam balance.
– No scale of weight markings

is required for this problem!
• How many weighings are

needed to guarantee that the
counterfeit coin will be found?

?

11/4/2014 43/103

What is the trivial solutions in terms
of the number of weighings?

• Obviously, in the worst case scenario, we
can always find the counterfeit coin by
making 4 pairwise weighing.

• In the best case scenario this approach
may result in finding the counterfeit coin in
the first measurement.

11/4/2014 44/103

As a Decision-Tree Problem
• In each situation, we pick two disjoint and

equal-size subsets of coins to put on the
scale.

The balance then
“decides” whether
to tip left, tip right,
or stay balanced.

A given sequence of
weighings thus yields
a decision tree with
branching factor 3.

12

11/4/2014 45/103

General Solution Strategy
• The problem is an example of searching for 1 unique

particular item, from among a list of n otherwise
identical items.
– Somewhat analogous to the adage of “searching for a needle

in haystack.”
• Armed with our balance, we can attack the problem

using a divide-and-conquer strategy, like what’s done in
binary search.
– We want to narrow down the set of possible locations where

the desired item (counterfeit coin) could be found down from
n to just 1, in a logarithmic fashion.

• Each weighing has 3 possible outcomes.
– Thus, we should use it to partition the search space into 3

pieces that are as close to equal-sized as possible.
• This strategy will lead to the minimum possible worst-

case number of weighings required.
11/4/2014 46/103

General Balance Strategy

• On each step, put n/3 of the n coins to be
searched on each side of the scale.
– If the scale tips to the left, then:

• The lightweight fake is in the right set of n/3 ≈ n/3 coins.
– If the scale tips to the right, then:

• The lightweight fake is in the left set of n/3 ≈ n/3 coins.
– If the scale stays balanced, then:

• The fake is in the remaining set of n − 2n/3 ≈ n/3 coins
that were not weighed!

11/4/2014 47/103

Coin Balancing Decision Tree
• Here’s what the tree looks like in our case:

thus 2 weighing are needed only

123 vs 456

1 vs. 2

left:
123 balanced:

78right:
456

7 vs. 84 vs. 5

L:1 R:2 B:3 L:4 R:5 B:6

L:7 R:8

First weighing

Second weighing

11/4/2014 48/103

We are skipping Huffman coding,
Prefix coding and Game trees

• Just a word on Huffman
– It is used whenever data compression is needed.
– In particular, it is an important part of JEPG code for

image compression
– The basic idea is: if there are n coefficients

representing something, then encode the most
frequent coefficient with the shortest bit length:
say A appears 10 times, B-7 times,C-3 times, D-2
times, E-1 time and F-1 time

– Then A will be encoded by 1, B by 0, C by 10, D by
11, E by 100, and F by 101

13

11/4/2014 49/103

10.3 Tree Traversal
• A traversal algorithm is a procedure for

systematically visiting every vertex of an
ordered binary tree. Why this may be
needed? For example, to perform a task in
each node.

• Traversal algorithms
– Preorder traversal
– Inorder traversal
– Postorder traversal

• Infix/prefix/postfix notation
11/4/2014 50/103

What Pre-, In- & Post- stand for?

• They tell about

• where the roots of the tree and subtrees are
placed

• Pre- means the roots are the first (PREcede)
• In- means the roots are IN the middle
• Post- means the roots are the last (POST=after)

51/103

Let T be an ordered binary tree with root r.

If T has only r, then r is the preorder traversal.
Otherwise, suppose T1, T2 are the left and

right subtrees at r. The preorder traversal
begins by visiting r. Then traverses T1 in
preorder, then traverses T2 in preorder.

PREORDER Traversal Algorithm

52/103

Preorder Traversal

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

ROOT

Visit left subtree second Visit right subtree last

Visit first.

Thus, result, i.e., the Preorder Traversal is: J E A H T M Y

J E A H T M Y

14

11/4/2014 53/103

Preorder Traversal

Preorder Traversal A B C E F D

54/103

Let T be an ordered binary tree with root r.

If T has only r, then r is the inorder traversal.
Otherwise, suppose T1, T2 are the left and

right subtrees at r. The inorder traversal
begins by traversing T1 in inorder. Then
visits r, then traverses T2 in inorder.

INORDER Traversal Algorithm

55/103

Inorder Traversal

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

ROOT

Visit left subtree first Visit right subtree last

Visit second

Thus, result, i.e., the Preorder Traversal is: A E H J M T Y

A E H J M T Y

56/103

Let T be an ordered binary tree with root r.

If T has only r, then r is the postorder traversal.
Otherwise, suppose T1, T2 are the left and right

subtrees at r. The postorder traversal begins
by traversing T1 in postorder. Then traverses
T2 in postorder, then ends by visiting r.

POSTORDER Traversal
Algorithm

15

57/103

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

ROOT

Visit left subtree first Visit right subtree second

Visit last

Postorder Traversal A H E M Y T J

11/4/2014 58/103

Postorder Traversal

Postorder Traversal B E F C D A

11/4/2014 59/103

Traversals of a Binary Tree

Traversals of a binary tree: a) preorder; b) inorder; c) postorder

60/103

A special kind of binary tree in which:
1. Each leaf node contains a single

operand,

2. Each nonleaf node contains a single
binary operator, and

3. The left and right subtrees of an operator
node represent subexpressions that must
be evaluated before applying the operator
at the root of the subtree.

A Binary Expression Tree is . . .

‘-’

‘8’ ‘5’

ROOT

16

61/103

A Binary Expression Tree

‘-’

‘8’ ‘5’

ROOT

INORDER TRAVERSAL: 8 - 5 has value 3

PREORDER TRAVERSAL: - 8 5

POSTORDER TRAVERSAL: 8 5 -

62/103

‘*’

‘+’

‘4’

‘3’

‘2’

What value does it have?

(4 + 2) * 3 = 18

A Binary Expression Tree

63/103

Levels Indicate Precedence
When a binary expression tree is used to

represent an expression, the levels of the
nodes in the tree indicate their relative
precedence of evaluation.

Operations at higher levels of the tree are
evaluated later than those below them. The
operation at the root is always the last
operation performed.

11/4/2014 64/103

Infix, Prefix, and Postfix
Notation are for your learning.

Just 2 pages

Next few slides are exercises
for these three notations!

17

65/103

A Binary Expression Tree

‘*’

‘+’

‘4’

‘3’

‘2’

What infix, prefix, postfix expressions does it represent?

66/103

A Binary Expression Tree

‘*’

‘+’

‘4’

‘3’

‘2’

Infix: ((4 + 2) * 3)
Prefix: * + 4 2 3 evaluate from right
Postfix: 4 2 + 3 * evaluate from left

67/103

Evaluate
this binary expression tree

‘*’

‘-’

‘8’ ‘5’

What infix, prefix, postfix expressions does it represent?

‘/’

‘+’

‘4’

‘3’

‘2’

68/103

A binary expression tree

Infix: ((8 - 5) * ((4 + 2) / 3))
Prefix: * - 8 5 / + 4 2 3
Postfix: 8 5 - 4 2 + 3 / * has operators in order used

‘*’

‘-’

‘8’ ‘5’

‘/’

‘+’

‘4’

‘3’

‘2’

18

69/103

A binary expression tree

Infix: ((8 - 5) * ((4 + 2) / 3))
Prefix: * - 8 5 / + 4 2 3 evaluate from right
Postfix: 8 5 - 4 2 + 3 / * evaluate from left

‘*’

‘-’

‘8’ ‘5’

‘/’

‘+’

‘4’

‘3’

‘2’

70/103

Inorder Traversal: (A + H) / (M - Y)

‘/’

‘+’

‘A’ ‘H’

‘-’

‘M’ ‘Y’

ROOT

Print left subtree first Print right subtree last

Print second

71/103

Preorder Traversal: / + A H - M Y

‘/’

‘+’

‘A’ ‘H’

‘-’

‘M’ ‘Y’

Print left subtree second Print right subtree last

Print first

ROOT

72/103

‘/’

‘+’

‘A’ ‘H’

‘-’

‘M’ ‘Y’

Print left subtree first Print right subtree second

Print last

Postorder Traversal: A H + M Y - /

ROOT

19

11/4/2014 73/103

10.4 Spanning Trees

• A tree is an undirected connected graph without cycles
• A spanning tree of a connected undirected graph G is

– a subgraph of G that contains all of G’s vertices and
enough of its edges to form a tree

• To obtain a spanning tree from a connected undirected
graph with cycles
– Remove edges until there are no cycles

11/4/2014 74/103

Spanning Trees
• Detecting a cycle in an undirected

connected graph
– A connected undirected graph that has n vertices

must have at least n – 1 edges
– A connected undirected graph that has n vertices

and exactly n – 1 edges cannot contain a cycle
– A connected undirected graph that has n vertices

and more than n – 1 edges must contain at least
one cycle

Connected graphs that each have four vertices and three edges

11/4/2014 75/103

How to find a spanning tree of some graph?

Two possibilities:
Depth-First-Search (DFS)
Breadth-First-Search (BFS)

Spanning trees example

Run video Graph Traversals, but first show next slide
Taken from here: http://www.youtube.com/watch?v=or9xlA3YY 11/4/2014 76/103

Stack & Queue
• Stacks
• A stack is a container of objects that are inserted and removed according to

the last-in first-out (LIFO) principle. In the pushdown stacks only two
operations are allowed: push the item into the stack, and pop the item out of
the stack. A stack is a limited access data structure - elements can be added
and removed from the stack only at the top. push adds an item to the top of
the stack, pop removes the item from the top. A helpful analogy is to think of
a stack of books; you can remove only the top book, also you can add a new
book on the top.

• Queues
• A queue is a container of objects (a linear collection) that are inserted and

removed according to the first-in first-out (FIFO) principle. Example: a line
of students in the food court at VCU. Additions to a line are made at the
back, while removal happens at the front. In the queue only two operations
are allowed enqueue and dequeue. Enqueue means to insert an item into
the back of the queue, dequeue means removing the front item.

• The difference between stacks and queues is in removing. In a stack we
remove the item the most recently added; in a queue, we remove the item
the least recently added

Adopted from Adamchik’s lectures, CMU

20

11/4/2014 77/103

The DFS Spanning Tree
• Depth-First Search (DFS) proceeds along a

path from a vertex v as deeply into the
graph as possible before backing up

• To create a depth-first search (DFS)
spanning tree
– Traverse the graph using a depth-first search

and mark the edges that you follow
– After the traversal is complete, the graph’s

vertices and marked edges form the spanning
tree

– Supporting data structure is a STACK

11/4/2014 78/103

DFS Algorithm for those who like
programming and for all to understand

how DFS operates

Next few slides on DFS and BFS are taken from Goodrich & Tamassia, 2004

11/4/2014 79/103 11/4/2014 80/103

21

11/4/2014 81/103

Properties of DFS

11/4/2014 82/103

Analysis of DFS

11/4/2014 83/103

Path finding

11/4/2014 84/103

Cycle finding

22

11/4/2014 85/103

 Breadth-First Search (BFS) visits every
vertex adjacent to a vertex v that it can
before visiting any other vertex

 To create a breath-first search (BFS)
spanning tree
– Traverse the graph using a bread-first search

and mark the edges that you follow
– When the traversal is complete, the graph’s

vertices and marked edges form the spanning
tree

– Supporting data structure is a QUEUE

The BFS Spanning Tree

11/4/2014 86/103

BFS basics

11/4/2014 87/103

BFS algorithm

11/4/2014 88/103

BFS - example

23

11/4/2014 89/103

BFS-example cont.

11/4/2014 90/103

BFS-example cont. 2

11/4/2014 91/103

BFS properties

11/4/2014 92/103

BFS analysis

24

11/4/2014 93/103

BFS applications

11/4/2014 94/103

DFS vs. BFS

11/4/2014 95/103

DFS vs. BFS

11/4/2014 96/103

• A spanning tree of an undirected graph G is a
subgraph of G that is a tree containing all the vertices
of G.

• In a weighted graph, the weight of a subgraph is the
sum of the weights of the edges in the subgraph.

• A minimum spanning tree (MST) for a weighted
undirected graph is a spanning tree with minimum
weight.

•
• Note: Weight can be anything – length of the link,

time needed to pass the link, cost of the link etc,…

10.5 Minimum Spanning Trees

25

11/4/2014 97/103

Minimum Spanning Trees

• Cost of the spanning tree
– Sum of the costs of the edges of the

spanning tree
• A minimal spanning tree of a connected

undirected graph has a minimal edge-
weight sum
– There may be several minimum spanning

trees for a particular graph

11/4/2014 98/103

MST - example

An undirected graph and its minimum
spanning tree.

11/4/2014 99/103

Prim’s Algorithm - idea

• Prim's algorithm for finding an MST is a greedy*
algorithm.

• Start by selecting an arbitrary vertex, include it into
the current MST.

• Grow the current MST by inserting into it the vertex
closest to one of the vertices already in current
MST.

*A greedy algorithm is any algorithm that follows the problem solving
metaheuristic of making the locally optimal choice at each stage
with the hope of finding the global optimum. Note, however, that the
sum of local optima is not necessarily a global optimum!

The algorithm was invented in 1930 by Czech mathematician Vojtech Jarník, and reinvented by Prim in 1957,
as well as by Dijkstra in 1959!

11/4/2014 100/10

Prim’s Algorithm
• finds a minimal spanning tree that begins

generally at any, or at a given, vertex
– Find the least-cost edge (v, u) from a visited

vertex v to some unvisited vertex u
– Mark u as visited
– Add the vertex u and the edge (v, u) to the

minimum spanning tree
– Repeat the above steps until there are no

more unvisited vertices

26

11/4/2014 101/10

After the 3rd edge
has been selected

Note that here
we work with the
so-called CUTS
of the GRAPH,

and WE LOOK
FOR MINIMAL
COSTS OF THE
CUT (WHICH IS
A SET OF
NODES) TO
THE REST OF
THE NODES of
the GRAPH!

11/4/2014 102/10

In your textbook there is one
more algorithm for finding MST

named after KRUSKAL.

• It works differently than Prim’s one, but it is a
greedy algorithm too.

• Check your book about the details, if interested.

11/4/2014 103/10

This ends the Trees
Story here!!!

And now, back to
Chapter 4 on Induction

and Recursion

