VCU, Department of Computer Science
CMSC 302
Trees
Vojislav Kecman

11/4/2014 1/103

Topics

- Terminology
- Trees as Models
- Some Tree Theorems
- Applications of Trees
- Binary Search Tree
- Decision Tree
- Tree Traversal
- Spanning Trees

11/4/2014

Terminology

- Tree

- A tree is a connected undirected graph that contains no circuits.
- Theorem: There is a unique simple path between any two of its nodes.
- A (not-necessarily-connected) undirected graph without simple circuits is called a forest.
- You can think of it as a set of trees having disjoint sets of nodes
- Subtree of node (i.e., vertex) n
- A tree that consists of a child (if any) of node n and the child's descendants
- Parent of node n
- The node directly above node n in the tree
- Child of node \mathbf{n}
- A node directly below node n in the tree

11/4/2014

Which graphs are trees?

G_{2}

G_{3}

G1 and G2 are.
G3 has circuits.
G4 is not connected

11/4/2014
4/103

Terminology

- Root
- The only node in the tree with no parent
- Leaf
- A node with no children
- Siblings
- Nodes with a common parent
- Ancestor of node n
- A node on the path from the root to n
- Descendant of node n
- A node on a path from n to a leaf

Theorem A tree with n vertices has $n-1$ edges. We'll come back to this math a little latter
Theorem A graph is a tree if and only if there is a unique simple path between any two of its vertices.

What are the relations/terms/connections for some vertices?

1. b internal?
2. k internal?
3. g subtree root?
4. k descendant of g ?
5. d sibling of e ?

Tree and Forest Examples

- A Tree:
- A Forest:

Leaves in green,
internal nodes in brown.

Note: by adding this link, trees becomes graph. It's no longer tree!
11/4/2014

Rooted Trees
A rooted tree is a tree in which one vertex has been designated as the root and every edge is directed away from the root. Vertices of degree one are called leaves; ther vertices (including the roop are called internal vertices. The level of a vertex in a rooted tree is the length of the unique path from the root to this vertex. The height of a rooted tree is the maximum of levels of vertices.

11/4/2014
8/103

Examples of Rooted Trees

- Note that a given unrooted tree with n nodes yields n different rooted trees.

11/4/2014

Examples of Rooted Trees

Which Tree is Binary?

- Theorem: A given rooted tree is a binary tree iff every node other than the root has degree ≤ 3, and the root has degree $\leq \mathbf{2}$.

NO (the root has degree 3)
11/4/2014

YES

Some algebraic properties of trees

Theorem

 A full m-aProof Since each internal vertex of a full m-ary tree has m children, there should be $m i$ vertices of the tree except the root. The total number of a full m-ary tree is $m i+1$.

```
Corollary There are (m-1)i+1 leaves in a full m-ary tree.
Proof
    The number of leaves in a ful1)}m\mathrm{ -ary tree is equal to the total number of vertices minus the
    number of internal vertices; Wence there are mi+1-i=(m-1)i+1 leaves.
```

On the next slide, there will be some repetition and a little more of the trees' theory !

11/4/2014

Some Tree Theorems

- Any tree with n nodes has $e=n-1$ edges.
- A full m-ary tree with i internal nodes has $n=m i+1$ nodes, and $\ell=(m-1) i+1$ leaves.
- Proof: There are mi children of internal nodes, plus the root. And, $\ell=n-i=(m-1) i+1$. \square
- Thus, when m is known and the tree is full, we can compute all four of the values e, i, n, and ℓ, given any one of them.

More algebras about FULL m-ary trees

Full m-ary tree with:
(i) n vertices has
$i=(n-1) / m$ internal vertices
$I=[(m-1) n+1] / m$ leafs.
(ii) i internal vertices has
$n=m i+1$ vertices
$I=(m-1) i+1$ leafs.

> (iii) $/$ leafs has
> $n=(m /-1) /(m-1)$ vertices
$i=(l-1) /(m-1)$ internal vertices.

Example:

Full 3-ary tree:
$\mathrm{I}=9$ leafs
$\mathrm{n}=\left(3^{*} 9-1\right) /(3-1)=13$ total vertices
(iii) / leafs has $n=(m /-1) /(m-1)$ vertices
$\mathrm{i}=(9-1) /(3-1)=4$ internal vertices
(iii) $i=(l-1) /(m-1)$ internal vertices
$\mathrm{I}=(3-1) * 4+1=9$ leafs
(ii) $I=(m-1) i+1$ leafs.

11/4/2014

Some More Tree Theorems

- Definition: The level of a node is the length of the simple path from the root to the node.
- The height of a tree is maximum node level.
- A rooted m-ary tree with height h is called balanced if all leaves are at levels h or $h-1$.
- Theorem: There are at most m^{h} leaves in an m-ary tree of height h.
- Corollary: An m-ary tree with ℓ leaves has height $h \geq\left\lceil\log _{m} \ell\right\rceil$. If m is full and balanced then $h=\left\lceil\log _{m} \ell\right\rceil$.

One more example

Chain letter sent to 3 others represented by 3 -ary tree with leaf vertices those not sending etter.

1. How many people have seen letter, including first person, if no duplicates and letter ends after 100 people received but did not send? Total vertices those who have seen letter.
2. How many people sent the letter? Internal vertices those who sent letter.
$I=100$ Leaf vertices, people receiving but not sending the letter,
(iii) $/$ leafs $=100 \quad m$-ary $=3$
$n=(m l-1) /(m-1)$ vertices
$i=(l-1) /(m-1)$ internal vertices.
By (iii) $\mathrm{n}=\left(3^{*} 100-1\right) /(3-1)=299 / 2=149$ vertices, the number who have seen the letter
By (iii) $i=(100-1) /(3-1)=99 / 2=49$ internal vertices, the number who sent out the letter.
11/4/2014

Trees as Models

- Can use trees to model the following:
- Saturated hydrocarbons
- Organizational structures
- Computer file systems
- See about these in your textbook
- Perform the self learning here - it's simple

Two examples follow!

10.2 Applications of Trees

- Search trees
- Decision trees
- Prefix codes
- Expression trees

Before proceeding any further a tiny quiz for you? Which graphs are trees?

Searching always takes time; for huge relational data, and/or for huge trees, and/or for huge data sets, it takes huge time

So the goal in computer programs is often to find any stored item efficiently when all stored items are ordered.

A Binary Search Tree can be used to store items in its vertices. It enables efficient searches.

A Binary Search Tree (BST) is . . .

A special kind of binary tree in which:

1. Each vertex contains a distinct key value,
2. The key values in the tree can be compared using "greater than" and "less than", and
3. The key value of each vertex in the tree is less than every key value in its right subtree, and greater than every key value in its left subtree.

Shape of a binary search tree . .

Depends on its key values and their order of insertion. Insert the elements 'J' ' E ' ' F ' ' T ' 'A' in that order. The first value to be inserted is put into the root.
'J'

Inserting ' E ' into the BST
 'J’' 'E’ 'F' 'T’ 'A'

Thereafter, each value to be inserted begins by comparing itself to the value in the root, moving left if it is less, or moving right if it is greater. This continues at each level until it can be inserted as a new leaf.
'E'

Inserting ' F ' into the BST
 ```'J' 'E' 'F' 'T' 'A'```

Begin by comparing ' F ' to the value in the root, moving left if it is less, or moving right if it is greater. This continues until it can be inserted as a leaf.

Inserting 'T' into the BST
 'J' 'E' 'F' 'T' 'A'

Begin by comparing ' T ' to the value in the root, moving left if it is less, or moving right if it is greater. This continues until it can be inserted as a leaf.

Inserting ' A ' into the BST
 'J' 'E' 'F' 'T' 'A'

Begin by comparing ' A ' to the value in the root, moving left if it is less, or moving right if it is greater. This continues until it can be inserted as a leaf.

What binary search tree . . .

is obtained by inserting

the elements ' A ' ' E ' ' F ' ' J ' ' T ' in that order?

Binary search tree . . .

obtained by inserting

the elements

Another binary search tree

Add nodes containing these values in this order:
'D' 'B' 'L' 'Q' 'S' 'V' 'Z'

Binary Search Trees (BST) properties

- BST supports the following operations in $\Theta(\log n)$ i.e., $\mathrm{O}(\log n)$ average-case time:
- Searching for an existing item.
- Inserting a new item, if not already present.
- BST supports printing out all items in $\Theta(n)$ time.
- Note that inserting into a plain sequence a_{i} would instead take $\Theta(n)$ worst-case time.

What is the meaning of $\Theta($.$) i.e., \mathrm{O}($.$) ?$ (those are the famous Theta or Big O notations).

There is a traditional hierarchy of algorithms:

- $\mathbf{O}(1)$ is constant-time; such an algorithm does not depend on the size of its inputs.
- $\mathbf{O}(\mathrm{n})$ is linear-time; such an algorithm looks at each input element once and is generally pretty good.
- $O(n \log n)$ is also pretty decent (that is n times the logarithm base 2 of n).
- $O\left(n^{2}\right), O\left(n^{3}\right)$, etc. These are polynomial-time, and generally starting to look pretty slow, although they are still useful.
- $O\left(2^{n}\right)$ is exponential-time, which is common for machine learning, i.e., data mining tasks and is really quite bad. Exponential-time algorithms begin to run the risk of having a decent-sized input not finish before the person wanting the result retires.
11/4/2014 There are worse; like $\mathrm{O}\left(2^{\wedge} 2^{\wedge} \ldots(\mathrm{n}\right.$ times $\left.) ..{ }^{\wedge} 2\right)$.

Recursive Binary Tree Insert

- procedure insert(T : binary tree, x : item)
$v:=\operatorname{root}[T]$
if $v=$ null then begin
$\operatorname{root}[T]:=x$; return "Done" end
else if $v=x$ return "Already present"
else if $x<v$ then
return insert(leftSubtree[T], x)
else \{must be $x>v$ \}
return insert(rightSubtree[T], x)

Decision Trees

- A decision tree represents a decision-making process.
- Each possible "decision point" or situation is represented by a node.
- Each possible choice that could be made at that decision point is represented by an edge to a child node.
- In the extended decision trees used in decision analysis, we also include nodes that represent random events and their outcomes.

Coin-Weighing Problem

- Imagine you have 8 coins, one of which is a lighter counterfeit, and a free-beam balance.
- No scale of weight markings is required for this problem!
- How many weighings are needed to guarantee that the counterfeit coin will be found?

11/4/2014

What is the trivial solutions in terms of the number of weighings?

- Obviously, in the worst case scenario, we can always find the counterfeit coin by making 4 pairwise weighing.
- In the best case scenario this approach may result in finding the counterfeit coin in the first measurement.

As a Decision-Tree Problem

- In each situation, we pick two disjoint and equal-size subsets of coins to put on the scale.

General Solution Strategy

- The problem is an example of searching for 1 unigue particular item, from among a list of n otherwise identical items.
- Somewhat analogous to the adage of "searching for a needle in haystack."
- Armed with our balance, we can attack the problem using a divide-and-conquer strategy, like what's done in binary search.
- We want to narrow down the set of possible locations where the desired item (counterfeit coin) could be found down from n to just 1, in a logarithmic fashion.
- Each weighing has 3 possible outcomes.
- Thus, we should use it to partition the search space into 3 pieces that are as close to equal-sized as possible.
- This strategy will lead to the minimum possible worstcase number of weighings required.

General Balance Strategy

- On each step, put $n / 3$ of the n coins to be searched on each side of the scale.
- If the scale tips to the left, then:
- The lightweight fake is in the right set of $\lceil n / 3\rceil \approx n / 3$ coins.
- If the scale tips to the right, then:
- The lightweight fake is in the left set of $\mid n / 3\rceil \approx n / 3$ coins.
- If the scale stays balanced, then:
- The fake is in the remaining set of $n-2[n / 3] \approx n / 3$ coins that were not weighed!

Coin Balancing Decision Tree

- Here's what the tree looks like in our case: thus 2 weighing are needed only

We are skipping Huffman coding, Prefix coding and Game trees

- Just a word on Huffman
- It is used whenever data compression is needed.
- In particular, it is an important part of JEPG code for image compression
- The basic idea is: if there are n coefficients representing something, then encode the most frequent coefficient with the shortest bit length: say A appears 10 times, B-7 times, C-3 times, D-2 times, E-1 time and F-1 time
- Then A will be encoded by 1, B by $0, \mathrm{C}$ by 10, D by 11, E by 100, and F by 101

10.3 Tree Traversal

- A traversal algorithm is a procedure for systematically visiting every vertex of an ordered binary tree. Why this may be needed? For example, to perform a task in each node.
- Traversal algorithms
- Preorder traversal
- Inorder traversal
- Postorder traversal
- Infix/prefix/postfix notation

11/4/2014

What Pre-, In- \& Post- stand for?

- They tell about
- where the roots of the tree and subtrees are placed
- Pre- means the roots are the first (PREcede)
- In- means the roots are IN the middle
- Post- means the roots are the last (POST=after)

11/4/2014

PREORDER Traversal Algorithm

Let T be an ordered binary tree with root r .

If T has only r, then r is the preorder traversal.
Otherwise, suppose T_{1}, T_{2} are the left and right subtrees at r. The preorder traversal begins by visiting r. Then traverses T_{1} in preorder, then traverses T_{2} in preorder.

Preorder Traversal J E A H T M Y

52/103

INORDER Traversal Algorithm

Let T be an ordered binary tree with root r .
If \mathbf{T} has only r, then r is the inorder traversal.
Otherwise, suppose T_{1}, T_{2} are the left and right subtrees at r. The inorder traversal begins by traversing T_{1} in inorder. Then visits r, then traverses T_{2} in inorder.

Inorder Traversal AEHJMTY

Thus, result, i.e., the Preorder Traversal is: A E H J M TY

POSTORDER Traversal Algorithm

Let T be an ordered binary tree with root r .

If T has only r, then r is the postorder traversal. Otherwise, suppose T_{1}, T_{2} are the left and right subtrees at r. The postorder traversal begins by traversing T_{1} in postorder. Then traverses T_{2} in postorder, then ends by visiting r .

Postorder Traversal A H E M Y T J

Traversals of a Binary Tree

Traversals of a binary tree: a) preorder; b) inorder; c) postorder

A Binary Expression Tree

| INORDER TRAVERSAL: | $8-5$ has value 3 |
| ---: | :--- | :--- | :--- |
| PREORDER TRAVERSAL: | -85 |
| POSTORDER TRAVERSAL: | $85-$ |

A Binary Expression Tree

What value does it have?
$(4+2) * 3=18$

Levels Indicate Precedence

When a binary expression tree is used to represent an expression, the levels of the nodes in the tree indicate their relative precedence of evaluation.

Operations at higher levels of the tree are evaluated later than those below them. The operation at the root is always the last operation performed.

Infix, Prefix, and Postfix Notation are for your learning.

Just 2 pages
Next few slides are exercises for these three notations!

A Binary Expression Tree

What infix, prefix, postfix expressions does it represent?

A Binary Expression Tree


```
Infix: (( 4 + 2) * 3)
Prefix: * + 4 2 3 evaluate from right
Postfix: 42 + 3 * evaluate from left
```


A binary expression tree

Infix: $\quad((8-5) *((4+2) / 3))$
Prefix: *-85/+423
Postfix: 85-42+3/* has operators in order used

Inorder Traversal: $(A+H) /(M-Y)$

Postorder Traversal: A H + M Y - /

10.4 Spanning Trees

- A tree is an undirected connected graph without cycles
- A spanning tree of a connected undirected graph G is
- a subgraph of G that contains all of G 's vertices and enough of its edges to form a tree
- To obtain a spanning tree from a connected undirected graph with cycles
- Remove edges until there are no cycles

Spanning trees example

Example

Theorem A simple graph is connected if and only if it has a spanning tree
How to find a spanning tree of some graph?
Two possibilities:

> Depth-First-Search (DFS) Breadth-First-Search (BFS)

Run video Graph Traversals, but first show next slide 11/4/2014

Taken from here: http://www.youtube.com/watch?v=or9x|A3YY

Spanning Trees

- Detecting a cycle in an undirected connected graph
- A connected undirected graph that has n vertices must have at least $n-1$ edges
- A connected undirected graph that has n vertices and exactly $n-1$ edges cannot contain a cycle
- A connected undirected graph that has n vertices and more than $n-1$ edges must contain at least one cycle

Connected graphs that each have four vertices and three edges

Stack \& Queue

- Stacks

A stack is a container of objects that are inserted and removed according to the last-in first-out (LifO) principle. In the pushdown stacks only two operations are allowed: push the item into the stack, and pop the item out of the stack. A stack is a limited access data structure - elements can be added and removed from the stack only at the top. push adds an item to the top of the stack, pop removes the item from the top. A helpful analogy is to think of a stack of books; you can remove only the top book, also you can add a new book on the top.

Queues

- A queue is a container of objects (a linear collection) that are inserted and removed according to the first-in first-out (FIFO) principle. Example: a line removed according to the first-in first-out (FIFO) principle. Example: a of students in the food court at vcu. Additions to a line are made at he back, while emoval happens at are allowe the back of the queue, dequeue means removing the front item.

The difference between stacks and queues is in removing. In a stack we remove the item the most recently added; in a queue, we remove the item the least recently added

The DFS Spanning Tree

- Depth-First Search (DFS) proceeds along a path from a vertex v as deeply into the graph as possible before backing up
- To create a depth-first search (DFS) spanning tree
- Traverse the graph using a depth-first search and mark the edges that you follow
- After the traversal is complete, the graph's vertices and marked edges form the spanning tree
- Supporting data structure is a STACK

11/4/2014

DFS Algorithm for those who like programming and for all to understand how DFS operates

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges
Algorithm $D F S(G)$
Input graph G
Output labeling of the edges of G as discovery edges and back edges
for all $u \in$ G.vertices $($
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in G$.vertices(
if $\operatorname{getLabel}(v)=$ UNEXPLORED $\operatorname{DFS}(G, v)$

Algorithm $D F S(G, v)$
Input graph G and a start vertex v of G Output labeling of the edges of G in the connected component of \boldsymbol{v} as discovery edges and back edges setLabel(v, VISITED)
for all $e \in$ G.incidentEdges(v)
if $\operatorname{getLabel}(e)=U N E X P L O R E D$

$$
w \leftarrow \text { opposite }(v, e)
$$

if $\operatorname{getLabel}(w)=U N E X P L O R E D$ setLabel(e, DISCOVERY) $\operatorname{DFS}(G, w)$
else
setLabel(e, BACK)
11/4/2014 Next few slides on DFS and BFS are taken from Goodrich \& Tamassia, 2004

The DFS algorithm is similar to a classic strategy for exploring a maze

- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope
 (recursion stack)

11/4/2014

Path finding

We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern

- We call $\operatorname{DFS}(G, u)$ with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertexAs soon as destination vertex z is encountered, we return the path as the contents of the stack

Algorithm pathDFS (G, v, z)
setLabel(v, VISITED)
S.push(v)
if $v=z$
return S.elements()
for all $e \in G$.incidentEdges(v)
if $\operatorname{getLabel}(e)=$ UNEXPLORED
$w \leftarrow$ opposite (v, e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED
setLabel(e, DISCOVERY)
S.push(e)
$\operatorname{pathDFS}(\boldsymbol{G}, w, z)$
S.pop(e)
else
setLabel(e, BACK)
S.pop(v)

Analysis of DFS

Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ timeEach vertex is labeled twice

- once as UNEXPLORED
- once as VISITED

Each edge is labeled twice

- once as UNEXPLORED
- once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure

- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 m$

11/4/2014

Cycle finding

We can specialize the DFS algorithm to find a simple cycle using the template method pattern

- We use a stack S to keep track of the path between the start vertex and the current vertex As soon as a back edge $(\boldsymbol{v}, \boldsymbol{w})$ is encountered, we return the cycle as the portion of the stack from the top to vertex \boldsymbol{w}

Algorithm cycleDFS(G, v, z) setLabel(v, VISITED) S.push(v)
for all $e \in$ G.incidentEdges(v) if $\operatorname{getLabel}(e)=U N E X P L O R E D$ $w \leftarrow$ opposite($v, e)$
S.push(e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED setLabel(e, DISCOVERY) pathDFS(G, w, z) S.pop(e)
else
$T \leftarrow$ new empty stack repeat
$o \leftarrow$ S.pop 0
T.push(o)
until $o=w$ return T.elements() S.pop(v)

The BFS Spanning Tree

- Breadth-First Search (BFS) visits every vertex adjacent to a vertex v that it can before visiting any other vertex
- To create a breath-first search (BFS) spanning tree
- Traverse the graph using a bread-first search and mark the edges that you follow
- When the traversal is complete, the graph's vertices and marked edges form the spanning tree
- Supporting data structure is a QUEUE

BFS algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)
Input graph G
Output labeling of the edges and partition of the vertices of \boldsymbol{G}
for all $u \in G . v e r t i c e s()$ setLabel(u, UNEXPLORED)
for all $e \in$ G.edges
setLabel(e, UNEXPLORED)
for all $v \in G$.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED $\operatorname{BFS}(G, v)$

```
Algorithm BFS(G,s)
    L
    L
    setLabel(s, VISITED)
    i}\leftarrow
    while }\neg\mp@subsup{L}{\mathrm{ sisEmpty(0}}{(
        Li+1
        for all v}\in\mp@subsup{L}{i}{}\mathrm{ elements()
            for all }e\in\mathrm{ G.incidentEdges(v)
            if getLabel(e)=UNEXPLORED
                    w}\leftarrow\mathrm{ opposite(v,e)
                    if getLabel(w)=UNEXPLORED
                    setLabel(e, DISCOVERY)
                    setLabel(w, VISITED)
                    Li+1.insertLast(w)
                    else
                    setLabel(e, CROSS)
        i\leftarrowi+1
```


BFS basics

Breadth first search

 (BFS) is a general technique for traversing a graphA BFS traversal of a graph G

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G

11/4/2014

- BFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- BFS can be further extended to solve other graph problems
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

BFS - example

11/4/2014
88/103

BFS properties

Notation

G_{s} : connected component of s
Property 1
$\operatorname{BFS}(G, s)$ visits all the vertices and edges of G_{s}
Property 2

The discovery edges labeled by $B F S(G, s)$ form a spanning tree T_{s} of G_{s}
Property 3
For each vertex v in L_{i}

- The path of T_{s} from s to v has i edges
- Every path from s to v in \boldsymbol{G}_{s} has at least i edges

BFS-example cont. 2

BFS analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence L_{i}

- Method incidentEdges is called once for each vertex
- BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is
represented by the adjacency list structure
- Recall that $\sum_{v} \operatorname{deg}(v)=2 m$

11/4/2014

BFS applications

Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Back edge (v,w)

- wis an ancestor of v in the tree of discovery edges

11/4/2014
Cross edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is in the same level as v or in the next level in the tree of discovery edges

10.5 Minimum Spanning Trees

- A spanning tree of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G.
- In a weighted graph, the weight of a subgraph is the sum of the weights of the edges in the subgraph.
- A minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum weight.
- Note: Weight can be anything - length of the link time needed to pass the link, cost of the link etc, ...

Minimum Spanning Trees

- Cost of the spanning tree
- Sum of the costs of the edges of the spanning tree
- A minimal spanning tree of a connected undirected graph has a minimal edgeweight sum
- There may be several minimum spanning trees for a particular graph

Prim's Algorithm - idea

The algorithm was invented in 1930 by Czech mathematician Vojtech Jarnik, and reinvented by Prim in 1957, as well as by Dijkstra in 1959!

- Prim's algorithm for finding an MST is a greedy* algorithm.
- Start by selecting an arbitrary vertex, include it into the current MST.
- Grow the current MST by inserting into it the vertex closest to one of the vertices already in current MST.
*A greedy algorithm is any algorithm that follows the problem solving metaheuristic of making the locally optimal choice at each stage with the hope of finding the global optimum. Note, however, that the sum of local optima is not necessarily a global optimum! 1/4/2014

MST - example

An undirected graph and its minimum spanning tree.

11/4/2014

Prim's Algorithm

- finds a minimal spanning tree that begins generally at any, or at a given, vertex
- Find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex u
- Mark u as visited
- Add the vertex u and the edge (v, u) to the minimum spanning tree
- Repeat the above steps until there are no more unvisited vertices

In your textbook there is one more algorithm for finding MST named after KRUSKAL.

- It works differently than Prim's one, but it is a greedy algorithm too.
- Check your book about the details, if interested.

This ends the Trees Story here!!!

And now, back to Chapter 4 on Induction and Recursion

